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Minimization of Nondeterministic Finite Automata
HiroAKI SENGOKU
Abstract

A nondeterministic finite automaton is the essential concept of
the theory of formal language. It is also closely related to the cod-
ing theory, and plays an important role in various applications.
It is, therefore, very important to investigate and understand the
properties of nondeterministic finite automata. In this thesis, the
minimum nondeterministic finite automata equivalent to the given
automaton are discussed, and the minimization algorithm is pre-
sented.

In the case of deterministic finite automata, by merging equiva-
lent states of the given automaton, the unique reduced deterministic
finite automaton can be obtained. Furthermore, the reduced deter-
ministic finite automaton is the minimum state deterministic au-
tomaton. However in the case of nondeterministic finite automata,
the reduced automaton is not always minimum. It is obvious that
there are only finite number of nondeterministic finite automata
which have fewer states than the given automaton. Therefore we
can always find the minimum equivalent automata by exhaustive
search. However this method is not practical.

The first non-exhaustive search algorithm for minimizing nonde-

terministic finite automata was proposed by Kameda and Weiner[3].
In their algorithm, they make a canonical form of the given au-

tomaton, called a reduced automaton matrix, and synthesize the
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minimum nondeterministic automaton from it. However, all the
synthesized automata are not equivalent to the given one. Thus,
if the synthesized automaton is not equivalent, they must search
another automaton from the matrix.

In this thesis, we present more effective algorithm and prove its
correctness. That is, all the constructed automata are equivalent to
the given one, and all the minimum equivalent automata in stan-
dard form can be obtained. In this algorithm, we normalize the
given automaton and obtain the normal nondeterministic finite au-
tomaton, which is unique in the equivalence class of automata. The
sets of input sequences from any states of the normal automaton
are disjoint. Therefore only by merging some states of the normal
automaton, all the minimum equivalent automata can be obtained.

The number of the minimum nondeterministic finite automata
in standard form equivalent to the given automaton is also dis-
cussed. We define the expanded reduced automaton matrix. Any
reduced automaton matrices are included in the expanded matrix.
Then, the number of the included matrix in the expanded matrix
corresponds to the upper bound of the number of the standard

formed minimum automata.
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1 Introduction

The study of finite automata is related to the various fields of
computer science. The equivalence between finite state automata
and regular expressions was presented by Kleene[2]. Since then,
the theory of automata is closely related to the theory of formal
languages. For example, some algorithms for constructing an
automaton derived from a regular expression using derivatives
were presented. Omne of them is the method of constructing a
deterministic automaton due to Brzozowski[4], and another is of
constructing a “small” size nondeterministic automaton due to
Berry and Sethi[3].

The relationships between the coding theory and the au-
tomata are also studied by numerous investigators. For example,
for a prefix code X, the minimum deterministic automaton rec-
ognizing X* coincides with the minimum deterministic automa-
ton representing X* as the stabilizer of a state. However in the
case of a code X, the minimum deterministic automaton repre-
senting X* as the stabilizer of a set of states has, in general,
fewer states because the automaton is a kind of a nondetermin-
istic automaton. The construction and the uniqueness of the
automaton are still open[6].

A nondeterministic automaton also plays an important role
in the various applications such as compiler[7], formal verifica-

tion, hardware description languages, and so on. In the study of



compiler the efficient automatic synthesis of the lexical analyzer
which uses properties of nondeterministic automata is proposed[9].
In the formal verification, sequential machines or concurrent pro-
grams to be verified is frequently modelled by a nondeterministic
automaton named the Kripke Structure. The automata can be
also used to compare the power of temporal logics[8], and con-
versely, the equivalence of the states of the automaton can be
defined using the temporal logics.

Hence the study of the properties of nondeterministic au-
tomata i1s very important in the connection to many areas of
computer science. Therefore, many attempts have been made.
However there still remain some difficult problems. One of the
hard problems is the minimization of the nondeterministic au-
tomaton.

In this paper, we consider the minimum nondeterministic fi-
nite automata which are equivalent to the given automaton, and

present an effective algorithm to minimize nondeterministic au-

tomata. In the case of deterministic finite automata, by merg-
ing equivalent states of the given deterministic automaton, the
unique reduced deterministic automaton can be obtained. Fur-
thermore, the reduced deterministic automaton is the minimum
state equivalent deterministic automaton. However in the case
of nondeterministic automata, reduced automaton is not always
minimum.

Because of the finiteness of nondeterministic automata, we



can always get the minimum automaton with exhaustive search
of all automata which are equivalent to the given automaton.
But this method is not practical.

The first non-exhaustive search algorithm was proposed by
Kameda and Weiner[3]. In their algorithm, they make two de-
terministic automata which are equivalent to the given automa-
ton and to the reversed automaton of the given one, respec-
tively. Next, they make a reduced automaton matrix whose
rows and columns correspond to the states of these determin-
istic automata, respectively, that is the canomnical form of the
given automaton.

Next, they synthesize automata from the matrix, but as they
pointed, all the nondeterministic automata synthesized from the
matrix do not recognize the same input sequences recognized by
a given automaton. Thus, on finding the minimum automaton,
when synthesized automaton is not equivalent to the given one,
they search another automaton. The condition under which a
non-equivalent automaton is synthesized is unknown.

In this thesis, we present a more effective algorithm: synthe-
sized automata are always equivalent to the given one. First, we
make the unique “normal” nondeterministic automaton by using
subset construction. Because of the uniqueness of the minimum
deterministic automaton, this normal automaton is unique, too.
Secondly, we synthesize a minimum automaton from this normal

automaton.



We define the standard form of a nondeterministic automa-
ton. Then, all the minimum automata in standard form are
obtained by the algorithm. We also consider the question: how
many minimum automata are equivalent to the given automaton.

In Section 2, we describe some basic definitions used in later
discussion. In Section 3, the minimization method by Kameda
and Weiner is introduced. In Section 4, we propose the new
minimization method. In Section 5, we discuss the number of

the minimum automata. And Section 6 is for conclusion.



2 Preliminaries

In this section basic definitions used in the following sections are
presented.
In the following, we always use X as an input alphabet to au-

tomata.

Definition 1 (Nondeterministic Finite Automaton) A nonde-

terministic finite automaton A over alphabet ¥ is a quadruple
A= (5767 SOaF)a
where

e S: the finite set of states,
e &: the transition function, 6§ : § x ¥ — 27,
e Sy: the set of initial states, Sy C .S and Sy # ¢,

e [ the set of accepting states, F' C S and F # ¢.

A-transition (i.e. a transition which can occur without no input)

1s not allowed. O

The domain of the transition function é is extended from S x X2

to 2° x . That is, for RC S, z € %,

S(R,z) = LEJRé(S, ).

Furthermore, for 0 = x129 - - - 2,

O(R,0) =6(6(...6(6(R,x1),09), .y Tp_1), Ty)-
5



For null input sequence €, (R, €) = R.
We assume that there are no states which are not reachable from

the initial states. That is, |J 6(S¢,0) = S.

oceY*

Definition 2 (Deterministic Finite Automaton) A determin-
istic finite automaton is a special case of a nondeterministic finite
automaton. That is, a nondeterministic finite automaton A =

(5,6, S50, F') is called a deterministic finite automaton, if and only

if

?

o |Sy| =1 (i.e. the cardinality of the set Sy is equal to 1),

o for any o € ¥*, |6(Sy,0)| < 1.

d

For an nondeterministic automaton A = (5,6, Sy, F), the be-
havior of A (denoted by bh(A)) is a set

bh(A) = {o € *|8(Sy,0) N F # ¢},

That is, the behavior of A is a set of input sequences which are
accepted by an automaton A.
In the same way, for s; € S, S; C S, the behavior from s; and

from S; are respectively as follows:

bh(A, 8;) = {o € ¥*|8(S:,0) N F # ¢}



The first parameter A may be omitted when it is not ambiguous.
For an empty set of states, bh(¢) = ¢.
By using the behavior, equivalence of automata, states, and sets

of states are defined.

Definition 3 (Equivalent Automata) Automata A, B3 are equiv-
alent, if and only if bh(.A) = bh(5). O

Definition 4 (Equivalent States) States s;,s; € S (or sets of
states S;,.5; C S) are equivalent, if and only if bh(s;) = bh(s;) (or
bh(S;) = bh(S;)). O

We assume any two states of a given automaton are not equiv-
alent states, because we can always obtain such an automaton by
simply merging equivalent states into one.

We also assume, for all s € S, bh(s) # ¢, because we can always
obtain such an automaton by removing states s such that bh(s) = ¢.

For any input sequence ¢ = xjx9---x,, the reversed sequence
o is the sequence with its alphabets arranged in the reversed or-
der. That is, @ = x,2,_1---x9x1. The reversed automaton which

accepts the reversed sequences is defined.

Definition 5 (Reversed Automaton) For a nondeterministic fi-

nite automaton A = (5,6, 50, F), the reversed automaton of A is

A =(8,6,F.Sy), where
Vi € X,Vs;,5; €S [si € 0(s;,2) & s; € 8(s4,2)].
Clearly, it follows that A = A. O

7



For a given nondeterministic automaton, the equivalent deter-
ministic automaton can be constructed. This operation is called

subset construction.

Definition 6 (Subset Construction) For a nondeterministic fi-

nite automaton A = (5,6, Sy, F'), the deterministic finite automaton

equivalent to A is D(A) = (Sp, 6p, Py, Fp), where

o Sp={0(S0,0)l0 € S \{o} = {p1,p2,-- .. Pu},
{6(pi- )} if 8(pisa) # ¢

pi € S )
[0 otherwise ( 2

L4 6P(pi7 ZL‘) =

[ P():{So},
[ sz{p65p|pﬂF7é¢}.

Note: p; € Sp is the subset of S. Vp; € Sp, Vo € X, if 6(p;, ) #
¢, then E|pj € Sp, p;j = 5(pi,£L‘). E|pj € Sp, p;j = So. u

Since Vp; € Sp, bh(D(A), p;) = bh(A,p;), if sets of states p;, p;
of A are equivalent, corresponding states of D(A) can be merged.

By merging the equivalent states of D(A), we can obtain the
unique reduced equivalent automaton which has minimum states.

Definitely diagnosability[1] is one of the important properties of
sequential machines, when we consider about the diagnosis of these

machines. We extend this property to a deterministic automaton.

Definition 7 (Definitely Diagnosable Automaton) A determin-
istic finite automaton A = (5,4, Sy, F') is definitely diagnosable, if



and only if, for any state s € S, there exists an input sequence o

which satisfy the following condition.
bh(6(s,0)) # ¢ and Vs' # s, bh(6(s',0)) = ¢
a

If we consider an input-output pair of a sequential machine as
an input alphabet (of a deterministic finite automaton), a definitely
diagnosable sequential machine can be regarded as a definitely diag-
nosable automaton, because long enough sequences of input-output
pair (which correspond to the distinguishing sequence) o satisfy the
above condition.

Note: A sequential machine is definitely diagnosable of order y,
if and only if, every input sequence of length p is a distinguishing
sequence.

A matrix called a reduced automaton matrix derived from a
nondeterministic automaton is defined[3]. For every equivalence

class of automata, the matrix is unique up to permutation.

Definition 8 (Reduced Automaton Matrix) For a given non-
deterministic finite automaton A = (S, 6, Sy, F'), S = {s1, 59, ..., 51},
let

® D(.A) = (SM, 6M7 M(), FM), SM = {ml, mo,..., mp},

® D(X) = (SN, 6]\7, No, FN), SN = {nl, ng,..., nq}.



Then a p X ¢ matrix (a;;) is defined, where

1 ifdsp €68, sp €m;Nny
a.. )
Y 0 otherwise.

If there are the same row or column vectors in the matrix, merge

them into one. O
Over an reduced automaton matrix, grid[3] is defined.

Definition 9 (Grid) Given a reduced automaton matrix, if all the
entries at the intersection of a set of rows {m; ,m;,,...,m; } and a
set of columns {n;,n;,,...,n;} are 1’s, then this set of rows and

columns is called a grid represented as follows.
g={mi,miy,...,m; 0, nj,,....nj}
a

A set of grids forms the “cover with grids”, if and only if every
1 in the reduced automaton matrix belongs to at least one grid in

the set.

10



3 Conventional Method

In this section, the method for minimizing nondeterministic au-
tomaton, proposed by Kameda and Weiner[3] is summarized.
To synthesize the minimum nondeterministic automata, an

inverse operation of the subset construction is defined.

Definition 10 (Subset Assignment) Let M = (Sy, 6x, My, Fiy)
be a deterministic finite automaton. The pair < S, f > is called a
subset assignment to M if S is a finite set and f: Sy — 2°\{¢}

is a function. Such an f is called a subset assignment function.

d

A nondeterministic automaton is constructed from the subset

assignment using the following intersection rule.

Definition 11 (Intersection Rule) Let M = (Sy, ép, My, Fiy)
be a deterministic finite automaton, and let < S, f > be a subset
assignment to M. Then I(S, f, M) is the nondeterministic finite
automaton (S,6,5g, F'), where, for Vs € S, Vm,; € Sy, and Vz €
Y

o Sy = f(myg) (mo € My. Since |My| =1, mg is unique.),
e sc & se f(mi)=m; € Fyl
o s €i(s,x) e [s€ f(m) =5 € flou(my,x))].

I(S, f,M) is called the nondeterministic finite automaton ob-

tained by the intersection rule from M. a

11



A subset assignment < S, f > is derived from the cover with
grids. That is, for the set of grids S, a subset assignment func-
tion 1s

flm;i) ={g € S|m; € g}.

The number of grids in the cover is equal to the number
of states of the nondeterministic automaton constructed using
the intersection rule. Therefore finding the minimum cover with
grids, the minimum automaton is obtained.

But there is a problem: the synthesized automaton is not
always equivalent to the given one. We must check the equality
of these two automata. If not equivalent, we must search another
automaton.

The reason why the non-equivalent automata are synthesized,
is that the reduced automaton matrix has no information about

the transition of the given automaton.

Definition 12 (Prime Grid) A grid ¢; contains another grid
go, 1f and only if all 1 entries contained in ¢y are also contained
n gi.

A grid is called a prime grid, if and only if it cannot be

contained in any other grids. O

If an equivalent automaton is synthesized from a cover with
grids, the cover with only prime grids can be derived. The equiv-

alent automaton synthesized from this cover has less or equal

12



states than the original automaton[3]. Hence, in finding the min-
imum automaton, we have only to consider prime grids over a
reduced automaton matrix. However all of the minimum au-
tomata cannot be constructed from the cover with only prime

grids.

13



4 Minimization using the Normal Automaton

In this section we present a new algorithm which can construct the
minimum automata efficiently. For a given automaton, we make the
canonical form of it, named the normal nondeterministic finite au-
tomaton. All the minimum automata constructed from this normal

automaton are equivalent to the given automaton.

4.1 Normal Nondeterministic Finite Automaton

In the case of a deterministic automaton, the minimum determinis-
tic automaton can be obtained by merging equivalent states. How-
ever in the case of a nondeterministic automaton, merging equiva-
lent states is not sufficient in order to get the minimum automaton.
Some automata have a state whose behavior (i.e. set of accept-
ing input sequences from the state) is the union of the behavior
of other states. In this case, that state must be split into states
which are equivalent to other states so that they can be merged
with respective states and the number of states decreases.
Suppose there are three states s, sy, s3, for example, and be-
havior of these states is bh(s) = «, bh(sy) = 3, and bh(s3) = aUj
respectively, where v # (3, and neither o nor 3 is not an empty set.
Any two of these three states are not equivalent. If s3 is split into
two states, namely sy, s5 whose behavior is «, 3 respectively, then
s4 can be merged with s; and s; with sy, because their behavior

is the same. After merging, there are only two states sq, so, thus

14



the number of states decreases by merging states after splitting of
states.

An automaton is convenient for minimization, whose states are
split up completely so that the behavior of any two states do not
contain common input sequences. That is to say, behavior of all

states is disjoint. We therefore define the following automaton.

Definition 13 (Disjoint Nondeterministic Finite Automaton)
A nondeterministic finite automaton A = (5,6, 5y, F), is a disjoint

nondeterministic finite automaton, if and only if, for all distinct

states s, s’ € S, bh(s) Nbh(s') = ¢. O
Lemma 1 A disjoint automaton has exactly one accepting state.

Proof: Suppose there are more than one accepting states. Let two
of these states are s,s'. € € bh(s) and € € bh(s'), thus bh(s) N
bh(s") # ¢. This is the contradiction to the hypothesis. Q.E.D.

Theorem 1 (Disjoint Nondeterministic Finite Automaton)
A is a disjoint nondeterministic finite automaton, if and only if A

is a deterministic automaton.

Proof: [Necessary Condition] Following from the Lemma 1, A has
exactly one accepting state. Let this accepting state be sp. For any
state s of A, bh(s) is disjoint. This implies, for any input sequence
o € ¥*, if 7 is received by A in state sy, automaton A transits to at
most one state s, such that ¢ € bh(A,s). Thus A is a deterministic

automaton whose initial state is sp.

15



[Sufficient Condition] Suppose there exist distinct states s, s’ of
A such that bh(s) N bh(s’) # ¢. Let 0 € bh(s) Nbh(s’). When 7 is
received by A in the initial state, this automaton transits to states
corresponding to s, s’ simultaneously. This is the contradiction to
the fact that A is a deterministic automaton. Thus, for any two
states s, s’ of A, bh(s)Nbh(s') = ¢. Thus A is a disjoint automaton.
Q.E.D.

Theorem 1 leads to the method of constructing a disjoint au-
tomaton equivalent to the given automaton.
Corollary: Given a nondeterministic finite automaton A, make the

deterministic automaton B, which is equivalent to A, using subset

construction. That is B = D(A).

Then the reversed automaton of B is a disjoint automaton D =
B which is equivalent to A. O
Example: We construct a disjoint nondeterministic automaton
equivalent to a nondeterministic automaton A shown in Figure 1.
Note that “— 2”7 means the state “2” is an initial state, and “{1]’
means the state “17 is an accepting state.

First, we make A, the reversed automaton of A, shown in Figure
2. Secondly, we make a deterministic automaton equivalent to A,
using subset construction. D(A) is obtained shown in Figure 3.
Finally, a disjoint nondeterministic automaton D shown in Figure
4 is obtained by making reversed automaton of D(.A). O

Conversely, by merging some states of the disjoint automaton

D, the original automaton A is obtained.

16



A 0 1
1,2,3 —
-2 — 1,2
—3] 1 2,3

Figure 1: Nondeterministic Automaton A

A0 1
—1[1,3 2
2] 1 2,3
3] |1 3

Figure 2: Nondeterministic Automaton A

D(A)

0 1

— {1}
{13}
{2}
{23}

{13y {2}

{1,3} {2,3}
{1} {23}
{1} {23}

Figure 3: Deterministic Automaton D(A)



D 0 1

] (125 42,3) -
—{1,3} [{1}, {1,3} -
—12} - 1}
— {2,3} - (1,3}, {2}, {2,3}

Figure 4: Disjoint Automaton D = D(A)



Theorem 2 Let D = (Sp,ép, Dy, Fp) be the disjoint automaton
constructed from the given automaton A = (5,6, Sy, F). Then,

Vs € S, bh(A,s) = bh(D, f(s)),
where f: S — 2°0 is a function, such that
f(s)={d € Sp|d > s}.

Note: Since D is the deterministic automaton constructed from

A by subset construction, a state of D is a subset of S.

Proof: Suppose d € f(s), that is, s € S is belongs to d € Sp.
Then, for any input sequence o € bh(D, d),

d e g(FD,ﬁ).

Following from Definition 10, it implies,

s € 6(F 7).

Thus o € bh(A, s). Therefore, bh(D,d) C bh(A, s).
Conversely, for any input sequence o € bh(A,s), it is obvious
that,
3d € f(s), o € bh(D.d).

Thus, bh(D, f(s)) D bh(A,s). Therefore bh(A, s) = bh(D, f(s)).
Q.E.D.
Example: We merge following states of a disjoint automaton D

shown in Figure 4 and get states of the original automaton A.

17



e merge states {1}, {1,3} and get state 1.
e merge states {2}, {2,3} and get state 2.

e merge states {1,3}, {2,3} and get state 3.

d

A disjoint automaton is not unique. We therefore define the

normal form of it.

Definition 14 (Normal Nondeterministic Finite Automaton)
The minimum disjoint finite automaton among the equivalent dis-

joint automata, is the normal nondeterministic finite automaton.

d

Lemma 2 Given a nondeterministic finite automaton A = (5,6, Sy, F),
make the deterministic automaton which is equivalent to A using

subset construction. Minimize this automaton (i.e. D(A)), and let
it be B.

Then the reversed automaton of B is the normal nondetermin-
istic finite automaton C = B which is equivalent to A.

Conversely, the reversed automaton of the normal automaton is

the minimum deterministic automaton.

Proof: It follows from Theorem 1. Q.E.D.
Corollary: A normal automaton is unique in the equivalence class
of automata.

Example: We construct the normal nondeterministic automaton

equivalent to a nondeterministic automaton A shown in Figure 1.

18



Minimize a deterministic automaton D(A) and get B shown in Fig-

ure 5 with renaming the states. That is,

® 51 = {1}
o 5o ={1,3}
e merge equivalent states {2}, {2,3} and get ss.

Then the normal nondeterministic automaton C shown in Figure
6 is obtained by making reversed automaton of B. O

Since any state of the normal automaton is obtained by merging
some equivalent states of the disjoint automaton, for any state of the
disjoint automaton, a state of the normal automaton correspond.

We reconstructed the original automaton from the disjoint au-
tomaton. Then we consider the reconstruction from the normal
automaton. That is, we merge some corresponding states of the
normal automaton instead of the states of the disjoint automaton.
Since the normal automaton is equivalent to the disjoint automa-
ton, the automaton reconstructed from the normal automaton is

also equivalent to the original automaton.

Definition 15 (Standard Form) A nondeterministic finite au-

tomaton A is in standard form, if and only if D(\A) is the minimum

deterministic automaton.

Since the disjoint automaton constructed from the standard

formed automaton is the normal automaton, the reconstruction

19



B |0 1

— 81| S92 S3

Figure 5: Minimized Deterministic Automaton B

c | 0 1
S| -

— 59| 51,59 -

— 53 - 51,52, 53

Figure 6: Normal Automaton C = B



from the normal automaton leads to the standard formed automa-
ton.

Example: We merge following states of the normal automaton C
shown in Figure 6 and get states of the standard formed automaton

A" shown in Figure 7.
e merge states 51, so and get state 1.
e rename state s3 to state 2.
e merge states sy, s3 and get state 3.

A is obtained by adding a transition “3 - 17 to A. O

We can transform the nondeterministic automaton into its stan-
dard form by adding some extra transitions to the automaton.
Therefore the number of states is unchangeable. Hence we only
consider the standard formed nondeterministic finite automata in
the following of this thesis.

All of the standard formed minimum nondeterministic automata
equivalent to the normal automaton, can be obtained by merging
some states of the normal nondeterministic automaton. We con-
sider the way how to construct the minimum automaton from a
given normal automaton.

Let a normal automaton be N = (Sy, éy, Ny, Fy), where Sy =

{n1,n9,...,n,}. The minimum automaton which is equivalent to

N can be expressed as A = (5,6, 5, F), where
e S C2Wie. s; €8 isasubset of Sy,

20



A’ 0 1
1] 11,2,3 -
-2 - 1,2

?

—~3 1 1,2,3

Figure 7: Standard Formed Nondeterministic Automaton A’



o O(s;,x) = Map(dy(s;,x)),
® SO = Map(NO)a

o = {si|siﬂFN #gb}

Map(Ry) (Ry C Sy) is a subset of S that satisfy UMap(Ry) =
Ry. (Note: UMap(Ry ) means the union of all sets s; € Map(Ry).)
The set S, therefore, must be determined so that the function Map :
258 — 2% can be defined.

Note, when we let Map(Ry) = {si|s; C Ry}, UMap(Ry) C Ry
always holds. Thus it follows for any S, we can always define a
function Map so that the set of A’s accepting sequences bh(A) is
included by the set of A’s accepting sequences bh(A).

4.2 Minimization Algorithm

In this section, we present an algorithm to construct the nondeter-
ministic finite automaton with the smallest number of states among
automata equivalent to the given normal nondeterministic finite au-
tomaton.

Let V' = (Sn,6n, Ny, Fy) be the given normal automaton, and
A =(S5,6,5), F) be an automaton constructed from A". All we have
to do is to find the smallest S C 2°¥, under which the function Map

exists.

Theorem 3 For every transition s; — s; (i.e. s; € 8(s;,x)) of a

nondeterministic finite automaton A = (5,6, Sy, F') which can be
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constructed by merging some states of the normal nondeterminis-
tic finite automaton A" = (Sy,dy, Ny, Fiy), the following condition
holds.

U E(njvx) C s

n;€s;
Proof: Suppose there exists a transition s; — s; (s; € 8(s;,))

where the above condition does not hold. Then, there exists n; € Sy

such that
ni € UJ on(nj,x)\si.

n;Es;
(“\” is a difference set operator)

Since n; is a state of the normal automaton, and n; € s;, thus
bh(n;) N bh(s;) = ¢. On the other hand, éx(n;,2) C s;, and s; €
6(s;, x) which implies s; C éy(s;, x), thus

bh(éN(nl, ZL‘)) C bh(éN(Sl, ZL‘))

This is a contradiction to the fact bh(n;) N bh(s;) = ¢. Thus,
there does not exists a transition where the theorem’s condition
does not hold. Q.E.D.

This theorem leads to the following theorem.

Theorem 4 If the reversed automaton of the normal automaton
is definitely diagnosable, there does not exist an equivalent non-
deterministic automaton which has fewer states than the normal
automaton.

Note: the reversed automaton of the normal automaton is a

deterministic automaton.
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Proof: Suppose there exists an equivalent automaton B which has
fewer states than the normal automaton N. Let A = (5,6, Sy, F)
be the reversed automaton of B. Since A has fewer states than N,
A has a state s; such that s; D {n;, n;} (n;,n; is a distinct states of
A,

Following from Theorem 3, for all input alphabet z € X, if A
has a state s; € &(s;,x), then s; D {6y(ni, x),05(n;,x)}. Same
things can be applied to s; repeatedly. Hence for all input sequence
o€ X",

on(ni o) # ¢ = dn(nj,0) # 0.

It implies, for all input sequence o € ¥*,

bh(a(niv 0)) 7é gb = bh(é(njv 0)) 7& gb,

because all of the states of B are reachable. It violates the definitely
diagnosability of . Q.E.D.
Using the Theorem 3, search tree over S C 2°¥ can be pruned.
That is, to construct the minimum automaton, we add states one
by one to S, which is initially an empty set, and if current S does
not satisfy the condition of Theorem 3, we stop adding more states
to S.
Example: A normal nondeterministic automaton N" = (Sy, 6y, No, Fiy),
Sy =1{0,1,2,3,4,5} is given as Figure 8.
First, let S = ¢, and we choose the elements of S (i.e. the
states of the minimum automaton) one by one. As Figure 8 shows,

Ny = {2,4,5}, and the sets of the initial states of the normal au-

23



N 0 1
o] | - _
1 0 4
—~2/1,2,3,5 2,3
3 — 0,5
4 - 1
=5 4 -

Figure 8: Normal Automaton A



tomaton and the minimum automaton must satisfy the equation:

Sy = Map(NNy). Thus S is chosen from the following 5 possibilities,
1. {{2,4,5}}

2,45, {5)5

- UH2,5), {415

4 5), {215

28 4 50

We choose, for example, the first possibility. Let state s; =
{2,4,5}, and Sy = {s1}. And add s; to S. Thus S becomes {s}.

Secondly, we consider the transitions from the state s;. There

[\

w

e

ot

are two transitions, namely 6(s1,0) and 6(s1,1). For 6(sy,0),
6(81, 0) = Map(éN(sl, 0)), 5]\7(81, 0) = {1, 2, 3, 4, 5}

Thus, we must add some states to S so that JR C S, UR =
{1,2,3,4,5} holds. Because {1,2,3,4,5}\s; = {1, 3}, states to be

added are chosen from the following 2 possibilities.
e One state which contains both of 1, 3.
e a state which contains 1 and a state which contains 3.

Notice these states can not contain 0. With 0 contained, s; would

contain 0 because of Theorem 3 and &y(0,0) = {1}. This is the
contradiction to the fact s; = {2,4,5}.
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Definition 16 (Cover) S C 2°¥ Ry, Ry C Sy are given.
Cover(S, Ry1, Ry2) is defined to be the set consisting of all the

sets R which satisfy following conditions.

e Ry; CUR C Sy\Rn
o Vs € R, Rvi ¢ UR\{s})
e Vsc R, Vs €S, s#s

If Ryi = o, COVGI’(S, o, RNQ) = {gb} a

That is to say, Cover(S, Ryi, Ry2) is an enumeration of the
possible sets of states to be added to S in order to cover Ry
and not to contain any elements of Ry9. Using this notation, for
6(s1,0), the set of states to be added to S can be written as R €
Cover(S,{1,3},{0,4,5}). In the same way, for 6(s;,1), the set of
states to be added to S can be chosen from Cover(S, {1,2,3},{0,4,5}).

If it is not necessary to construct all of the minimum automata
(i.e. in the case that it is sufficient only to construct one of the min-
imum automata), R € Cover(S, Ry1, Ry2), such that 3s € R, 3¢’ €
S, s D s, can be omitted, because s” = s\s' can be used instead of
s to cover Ry1. In other words, the third condition of the cover (i.e.

Vs € R, Vs' € S, s’ # s) can be replaced by the following condition.
e Vsec R,V§ €S sps

As {{1,2,3}} is a member of both Cover(S,{1,3},{0,4,5}) and
Cover(S,{1,2,3},{0,4,5}), so we choose {{1,2,3}}. Let s = {1, 2,3},
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and add sy to S. Then, 6(s1,0) = {s1,s2}, 6(s1,1) = {s2}. Now,
S = {s1,s9}.

In the next phase, we consider the transition from so. The set
of states to be added to S can be chosen from Cover(S,{0,5}, {4})
and Cover(S5,{0,3},{1}). As {{0,2,3,5}} is a member of both of
them, let s3 = {0,2,3,5} and add it to S. Then S = {s1, s9, s3}.

Since 6(s3,0) = {s1, 52}, 6(s3,1) = {s3}, no more states have to
be added to S. Similarly searching other branches of possibilities,
we’ll find there are no solutions where the number of states is less
than 3. Thus we obtain the minimum automaton shown in Figure
9. O

Minimization procedure goes as follows.

procedure Minimize(N = (Sy, éx, Ny, Fy))
m +— oo
Smin —Undefined
for all R € Cover(o, Ny, Sn\No)
Search(R, R)
return S,,;,

end

Sonin 1s a variable for a set of states of the minimal automaton
among the constructed automata. m is a variable such that m =
| Snin-

First, choose Sy from Cover(¢, Ny, Sy\Ng). That is, US; must
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contain Ny and may not contain anything else. Next, call Search
procedure to search the transitions from Sy, and to assign the set
of states of the minimum automaton to S,,;,. At the end of the
procedure, return the minimum set of states.

Procedure Search(S,T') to search the transition from T' C S goes
as follows. This procedure is called recursively, and pick up a state
one by one from T to search the transitions from the state.

If |S| > m, no more search is needed, because no automata
searched from S have less than m states. Thus return immediately.
If T'= ¢, all of the transitions are searched, that is, a new automa-
ton is constructed. Since |S| < m, this automaton has fewer states
than the old one. So let S, «— S and m < |S|, and return.

The above process forms the former part of the Search procedure

shown below.

Procedure Search(S,T)
if |S| > m then return
if T' = ¢ then begin
Smin — S
m — |9
return

end

In this procedure, only one of the minimum automaton can be

obtained, because when the minimum automaton is found, it imme-
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diately returns. To get all of the minimum automata, the procedure
must hold all of the sets of states of the minimum automata. We
use the variable S,,;, to hold the set. If the automaton, such that
|S| < m, is found, clear S, and let m = |S|. Then the former

part of the Search procedure goes as follows.

Procedure Search(S,T)
if |S| > m then return
if T' = ¢ then begin
if |S| < m then begin
Sin < ¢
m — |5]
end
Smin — Smin U S
return
end

else if |S| = m then return

The latter of the Search procedure goes as follows. Let s be one
of the elements of 1", remove s from T, and now search transitions
from s. For each transition (i.e. Va € ¥, 6(s,x)), calculate the
possible set of states to be added to S. Let R be the possible set.

Let Ry be the set of the normal automaton’s states transited
from s, which is covered with the states in S U R. The comple-

mentary set of Ry may not be covered with the states in R. Let

28



R’ be the set of the normal automaton’s states which is already
covered by the states in S. Thus, the set covered by R is Ry\R'.
At the result, the possible sets of states to be added belong to the
Cover(S, Ry\R', Sv\ Ry ).

Then, for any possible set R, add R to S and search recursively,
that is, call Search(S U R, T'U R).

seT

T — T\{s}

for all x € ¥ begin
Ry — | én(ni, x)

n;Es

Rys — Sy\Ry
R — {s; € S|s; C Ry}
Ryi — Ry\UR
for all R € Cover(S, Ry1, Ry2)
Search(SUR, TUR)
end

end

4.3 Correctness of the Algorithm

In this section, we prove the correctness of the algorithm proposed
in Section 4.2. First, we prove the property of finitely terminat-
ing. Secondly, we prove the soundness, that is, all the automata

constructed by the algorithm are equivalent to the given normal
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automaton. Finally, we prove the completeness, that is, all the
equivalent minimum nondeterministic automata in standard form
can be obtained.

Let N = (Sy,bn, Ny, Fx) be the given normal nondeterministic
finite automaton, which is an argument to the algorithm.

We begin with the property of finitely terminating.

Theorem 5 (Finitely Terminating) For any given automaton,

the minimization algorithm terminates.

Proof: For any set R € Cover(S, Ry1, Ry2), Vs € R, s ¢ S (follows
from Definition 16). It implies that all the elements added to T
(added when Search(SUR, T'U R) is called) are different from each
other. Since 2°V is a finite set, thus a set of all of the elements added
to T is finite. Every time the procedure Search(S,T') is called, one
element of T is removed by T « T\{s}. Hence T becomes an
empty set in finite time.

Since the set ¥ and the set Cover(S, Ry, Ry9) are finite, state-
ments under the two “for all” statements in the Search(S,T) pro-
cedure repeat finitely.

Therefore the minimization procedure terminates finitely. Q.E.D.

Next, we prove the soundness of the algorithm.

Lemma 3 For the minimum nondeterministic finite automaton A =
(S, 6, S0, F') constructed by the algorithm, the following conditions
hold.
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o Vs €S, 6(s,x) =Map(én(s,x)),
o Sy = Map(Np).

Proof: Sy is chosen from Cover(¢, Ny, Sx\Ny). It implies Ny C
USy C Sy\(Sn\No). Thus US; = Ny, that is, Sy = Map(Ny).
Suppose there exist s € S, x € ¥, such that VR C S, dn(s,x) #

UR. Let Ry = 6y(s,z). Following from the algorithm, there exists
S’,R C S, where

o Ryy = Sn\Ru,

R ={scS'sC Ry},

Ryi = Ry\UR/,
e JR € S, R € Cover(5', Ry1, Ry2).

Thus Ry\ U R C UR C Ry (follows from Definition 16). It
implies (UR)U(UR') = Ry, that is U(RUR') = Ry, and RUR' C S.
This is the contradiction. Q.E.D.

Theorem 6 (Soundness) All the automata constructed by the

algorithm are equivalent to the given normal automaton.
Definition 17 For a integer [,
bh;(A,s) = {o|o € bh(A,s) A |o| <},

where s may be a states or a set of states of an automaton A. O
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Proof: Following from Lemma 3, for the minimum nondetermin-
istic automaton A = (S, 4, Sy, F') constructed by the algorithm, fol-

lowing conditions hold.

o Vs €S, 8(s,a) = Map(dx(s, x)),

e Sy = Map(Ny),

o« F={s|snFy o).

Suppose, for a integer I,

Vs € 5, blu(A, 5) = bly(\, 5).
Since Vs € S, 8(s, ) = Map(dx (s, 2)),
bh(A, 8(s,2)) = bh(A', 8x (5, 7).

Thus,
Vs € S. blyy (A, s) = bhii(N, s).

Vs € S, bhy(A, s) = bhy(\, 5), because

e ifsNFy#0o

bho(A,s) =
¢ otherwise.
= bhy(N,s).
Hence, for any s, bh(A,s) = bh(N,s). Since Sy = Map(Ny),
bh(A) = bh(N). Q.ED.

Finally, we prove the completeness.

Theorem 7 (Completeness) All the standard formed minimum
automata equivalent to the given automaton are constructed by the

algorithm.
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Proof: All the minimum automata in standard form are con-
structed by merging some states of the normal automaton.
Following from Definition 16, all the set of states of the normal

automaton, which satisfy Theorem 3 can be chosen by the algo-

rithm. Q.E.D.
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5 The Number of the Minimum Automata

In this section, the number of the minimum automata in standard

form equivalent to a given automaton is discussed.

5.1 Expanded Reduced Automaton Matrix

Let A = (5,6,5,F) (S = {s1,59,...,5n}) be the minimum non-
deterministic automaton. The deterministic automaton which is
equivalent to A is M = D(A) = (Su, 6m, My, Far). Then, Sy is
a subset of the power set of S. We assume S); is equal to the
power set of S. Such an automaton is easily constructed by adding
some transitions labeled with extra alphabets. For example, if a set
{51, $9} does not appear in Sy, we add a new alphabet y to the set
Y and let 6(sy,y) = {s1,s9}. Then D(A) transit from states which
contain sy to the state which consists of sy, ss.

Similarly, we assume the set of states of D(A) is also equal to
the power set of S. Then the reduced automaton of A is (2™ —1) x
(2™ —1) matrix, where m = |S|. This matrix is covered by m grids.
Since row vectors of this matrix are distinct each other, 1 entries of
each row vector are covered by a distinct set of grids. The number
of distinct sets from m elements is 2" — 1, thus it implies the set of
row vectors are unique within permutation of the columns.

The same things can be applied to the column vectors, too. Con-
sequently the reduced automaton matrix derived from this kind of

automaton is unique, and only depends on the number of states
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of the minimum automaton. We define this automaton as the ex-

panded reduced automaton.

Definition 18 (Expanded Reduced Automaton Matrix) For
given m, the (2" — 1) x (2™ — 1) matrix, whose row or column vec-
tors are distinct each other, covered with m grids is the expanded

reduced automaton matrix X,,. a

Example: When m = 3, the expanded reduced automaton matrix

goes as follows.

s

Il
(S S SO T = S B St
(S S e S T S S S
o s T S
o G S N o I e B e
e = S RSt
e = S =S e
e S S Gyt

This matrix is covered by following 3 grids.

e g(X,)1=411,3,5,7;1,3,5,7}, i.e. agrid of 1,3,5,and Tth rows

and columns.
e g(X,,)2=12,3,6,7;2,3,6,7}

o g(X,,)3=14,5,6,7;4,5,6,7}
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Generally speaking, every expanded reduced automaton matrix
X, is covered by the following m grids after appropriate permuta-

tion of the rows and columns of the matrix.

g( Xk = {ili&(2°71) £ 0: jli&(2"7") #£ 0}

where k£ =1,2,...,m, and “&” means the bitwise “and” operator.

5.2 The Number of the Minimum Automata

For any reduced automaton matrix which is covered with m grids,
each row (or column) vector is covered with some of m grids. For
every covering patterns from m grids (i.e. a set of grids which covers
the all 1 entires of the vector), there exists the row (or column) of
the expanded reduced automaton matrix X,, which has the same
covering pattern, because every pattern exists in X,,. Thus, for
any rows (or columns) of a reduced automaton matrix, the row
(or column) of expanded matrix corresponds. It implies that any
reduced automaton matrix which is covered with m grids is included
in the X,,. In other word, by eliminating some rows and columns
from X,,, every reduced automaton matrices are obtained.

Example: The reduced automaton matrix of the automaton N

shown in Figure 8 goes as follows.
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This matrix is covered with following three grids, and each grid

correspond to the state of the minimum automaton shown in Figure

9.

o g(M) ={1,2,3,6;3,5,6} (i.e. a grid of 1,2,3, and 6th rows

and 3,5, and 6th columns) correspond to sj.
o g(M)y=1{2,3,4,5;2,3,4} correspond to ss.
o g(M)s=1{3,5,6;1,3,4,6} correspond to s.

After permutation of rows and columns of M: arrange 1,6,4.,5,2,

and 3rd row vector in this order, and 1,5,6,2,4,and 3rd column,

= = o = o O

—_ = = = O

0

following matrix M’ is obtained.

MI

0
1
0
1
0
1

1
1
0
0
1
1
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1
1
1
0
0
1

—_ = = = = O

1
1
1
0
1
1

—_ = = = =




M’ is included in X3 (i.e. M is the intersection of 2-7th rows
and 1-5,7th columns of Xj).

Since the set of m grids which cover X, is unique, determining
which part of X, a reduced automaton matrix is included, lead to
the set of grids which cover the reduced automaton matrix. Further
the set of grids lead to the minimum automaton.

Thus the number of the minimum automata, which is con-
structed from the normal automaton, is the number of reduced
automaton matrices which are included in the expanded reduced
automaton matrix. For a reduced automaton given (independent
to an automaton itself), upper bound of the number of the mini-
mum automata is the number of matrices included in the expanded

matrix.
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6 Conclusion

We have presented a minimization algorithm of nondeterministic
finite automata. In the conventional method using the reduced
automaton matrix proposed by Kameda and Weiner[3], the condi-
tion is unknown where the automaton, which is not equivalent to
the given one, is synthesized from the matrix. We have made it
clear by proposing the concept of the normal nondeterministic fi-
nite automaton. That is to say, the synthesized automaton is not
equivalent where the condition of Theorem 3 does not hold.

We do not consider much about the efficiency of the proposed al-
gorithm, because the algorithm as well as the conventional method
depends on the subset construction whose complexity is already
O(2") where n is the number of states of the given automaton.
The application of the minimization algorithm is a theme of future
research.

The conventional method[3] can be combined with the proposed
algorithm. That is, constructing the sets of states corresponding
to the prime grid only instead of all the possible sets of states.
It may be more efficient. However it cannot construct all of the
minimum automaton, because the minimum automaton may have
a state which does not correspond to the prime grid.

We have also presented a method to calculate the upper bound
of the number of the minimum automata in standard form, us-

ing the expanded reduced automaton matrix. The upper bound
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depends only to the reduced automaton matrix. In most cases,
we conjecture, the number of the minimum automaton is 1. But
the condition where the minimum automaton in standard form is
unique is also left for the future work.

As we pointed, there are non-standard formed automata. Thus
the number of the minimum automata may be larger. Moreover,
given behavior of all the state, the function Map is not unique.
Hence there are at least three stages in the varieties of the minimum
nondeterministic automata. At present, we do not know how to

handle such a vast variety of nondeterministic finite automata.
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