
Master Thesis

Minimization of Nondeterministic Finite Automata

Supervisor: Professor Shuzo YAJIMA

Department of Information Science

Faculty of Engineering

Kyoto University

Hiroaki SENGOKU

February 14, 1992

i

Minimization of Nondeterministic Finite Automata

Hiroaki SENGOKU

Abstract

A nondeterministic �nite automaton is the essential concept of

the theory of formal language. It is also closely related to the cod-

ing theory, and plays an important role in various applications.

It is, therefore, very important to investigate and understand the

properties of nondeterministic �nite automata. In this thesis, the

minimum nondeterministic �nite automata equivalent to the given

automaton are discussed, and the minimization algorithm is pre-

sented.

In the case of deterministic �nite automata, by merging equiva-

lent states of the given automaton, the unique reduced deterministic

�nite automaton can be obtained. Furthermore, the reduced deter-

ministic �nite automaton is the minimum state deterministic au-

tomaton. However in the case of nondeterministic �nite automata,

the reduced automaton is not always minimum. It is obvious that

there are only �nite number of nondeterministic �nite automata

which have fewer states than the given automaton. Therefore we

can always �nd the minimum equivalent automata by exhaustive

search. However this method is not practical.

The �rst non-exhaustive search algorithm for minimizing nonde-

terministic �nite automata was proposed by Kameda andWeiner[3].

In their algorithm, they make a canonical form of the given au-

tomaton, called a reduced automaton matrix, and synthesize the

ii

minimum nondeterministic automaton from it. However, all the

synthesized automata are not equivalent to the given one. Thus,

if the synthesized automaton is not equivalent, they must search

another automaton from the matrix.

In this thesis, we present more e�ective algorithm and prove its

correctness. That is, all the constructed automata are equivalent to

the given one, and all the minimum equivalent automata in stan-

dard form can be obtained. In this algorithm, we normalize the

given automaton and obtain the normal nondeterministic �nite au-

tomaton, which is unique in the equivalence class of automata. The

sets of input sequences from any states of the normal automaton

are disjoint. Therefore only by merging some states of the normal

automaton, all the minimum equivalent automata can be obtained.

The number of the minimum nondeterministic �nite automata

in standard form equivalent to the given automaton is also dis-

cussed. We de�ne the expanded reduced automaton matrix. Any

reduced automaton matrices are included in the expanded matrix.

Then, the number of the included matrix in the expanded matrix

corresponds to the upper bound of the number of the standard

formed minimum automata.

iii

非決定性有限オートマトンの状態数最小化

仙石浩明

内容梗概

非決定性有限オートマトンは形式言語理論の根幹を成し、符号理論

とも密接に関連している。また、様々な応用分野において重要な役割

を果たしている。従って非決定性有限オートマトンの性質を調べ、理

解することが重要である。本論文では、与えられたオートマトンに等

価で状態数が最小の非決定性有限オートマトンについて考察し、最小

化アルゴリズムを提案する。

決定性有限オートマトンの場合は、等価な状態を併合することによ

り唯一の既約な決定性有限オートマトンを作ることが出来る。さらに

既約な決定性有限オートマトンは、等価な決定性有限オートマトンの

中で最小の状態数を持つことが知られている。ところが非決定性有限

オートマトンの場合は、一般に既約なものが状態数最小であるとは限

らない。ある状態数以下の非決定性オートマトンの個数は高々有限で

あるので、その全てを探索すれば状態数最小の非決定性オートマトン

を常に得ることが出来る。しかしこの方法は探索空間が膨大なため現

実的ではない。

最初に全解探索でない最小化アルゴリズムが提案されたのは、Kameda,

Weinerによってである。このアルゴリズムでは与えられた非決定性オー

トマトンを正規化した Reduced Automaton Matrixを作り、このMa-

trix から状態数最小の非決定性オートマトンを生成するのであるが、

生成されたオートマトンの中には与えられたオートマトンと等価でな

いものがある。従って等価でない場合は別の非決定性オートマトンを

生成する必要がある。

iv

本論文では、与えられた非決定性有限オートマトンに等価なオート

マトンのみを構成するアルゴリズムを提案し、その正当性を証明する。

このアルゴリズムでは、まず与えられたオートマトンに等価な標準非

決定性有限オートマトンを作る事により正規化を行う。標準非決定性

有限オートマトンは各状態からの受理入力列の集合が互いに共有部分

を持たない。このため等価な状態数最小の非決定性有限オートマトン

は、標準オートマトンの状態を併合する事により構成する事が出来る。

本論文では、さらに与えられたオートマトンに等価な状態数最小の

非決定性オートマトンの個数についても考察する。まず、全ての Re-

duced Automaton Matrixを小行列として含む拡大 Reduced Automa-

ton Matrix を定義する。すなわち与えられたオートマトンに等価な最

小の非決定性オートマトンの状態数を m とすると、このオートマトン

に対応する Reduced Automaton Matrixは、行及び列を適当に交換

する事により、拡大 Reduced Automaton Matrix Xm に小行列とし

て含まれる。この時、含まれる小行列の個数が、状態数最小の等価な

非決定性オートマトンの個数の上界になる。

Minimization of Nondeterministic Finite Automata

Contents

1 Introduction 1

2 Preliminaries 5

3 Conventional Method 11

4 Minimization using the Normal Automaton 14

4.1 Normal Nondeterministic Finite Automaton : : : : : 14

4.2 Minimization Algorithm : : : : : : : : : : : : : : : : 21

4.3 Correctness of the Algorithm : : : : : : : : : : : : : 29

5 The Number of the Minimum Automata 34

5.1 Expanded Reduced Automaton Matrix : : : : : : : : 34

5.2 The Number of the Minimum Automata : : : : : : : 36

6 Conclusion 39

Acknowledgements 40

References 41

Appendix 43

1 Introduction

The study of �nite automata is related to the various �elds of

computer science. The equivalence between �nite state automata

and regular expressions was presented by Kleene[2]. Since then,

the theory of automata is closely related to the theory of formal

languages. For example, some algorithms for constructing an

automaton derived from a regular expression using derivatives

were presented. One of them is the method of constructing a

deterministic automaton due to Brzozowski[4], and another is of

constructing a \small" size nondeterministic automaton due to

Berry and Sethi[5].

The relationships between the coding theory and the au-

tomata are also studied by numerous investigators. For example,

for a pre�x code X , the minimum deterministic automaton rec-

ognizing X� coincides with the minimum deterministic automa-

ton representing X� as the stabilizer of a state. However in the

case of a code X , the minimum deterministic automaton repre-

senting X� as the stabilizer of a set of states has, in general,

fewer states because the automaton is a kind of a nondetermin-

istic automaton. The construction and the uniqueness of the

automaton are still open[6].

A nondeterministic automaton also plays an important role

in the various applications such as compiler[7], formal veri�ca-

tion, hardware description languages, and so on. In the study of

1

compiler the e�cient automatic synthesis of the lexical analyzer

which uses properties of nondeterministic automata is proposed[9].

In the formal veri�cation, sequential machines or concurrent pro-

grams to be veri�ed is frequently modelled by a nondeterministic

automaton named the Kripke Structure. The automata can be

also used to compare the power of temporal logics[8], and con-

versely, the equivalence of the states of the automaton can be

de�ned using the temporal logics.

Hence the study of the properties of nondeterministic au-

tomata is very important in the connection to many areas of

computer science. Therefore, many attempts have been made.

However there still remain some di�cult problems. One of the

hard problems is the minimization of the nondeterministic au-

tomaton.

In this paper, we consider the minimum nondeterministic �-

nite automata which are equivalent to the given automaton, and

present an e�ective algorithm to minimize nondeterministic au-

tomata. In the case of deterministic �nite automata, by merg-

ing equivalent states of the given deterministic automaton, the

unique reduced deterministic automaton can be obtained. Fur-

thermore, the reduced deterministic automaton is the minimum

state equivalent deterministic automaton. However in the case

of nondeterministic automata, reduced automaton is not always

minimum.

Because of the �niteness of nondeterministic automata, we

2

can always get the minimum automaton with exhaustive search

of all automata which are equivalent to the given automaton.

But this method is not practical.

The �rst non-exhaustive search algorithm was proposed by

Kameda and Weiner[3]. In their algorithm, they make two de-

terministic automata which are equivalent to the given automa-

ton and to the reversed automaton of the given one, respec-

tively. Next, they make a reduced automaton matrix whose

rows and columns correspond to the states of these determin-

istic automata, respectively, that is the canonical form of the

given automaton.

Next, they synthesize automata from the matrix, but as they

pointed, all the nondeterministic automata synthesized from the

matrix do not recognize the same input sequences recognized by

a given automaton. Thus, on �nding the minimum automaton,

when synthesized automaton is not equivalent to the given one,

they search another automaton. The condition under which a

non-equivalent automaton is synthesized is unknown.

In this thesis, we present a more e�ective algorithm: synthe-

sized automata are always equivalent to the given one. First, we

make the unique \normal" nondeterministic automaton by using

subset construction. Because of the uniqueness of the minimum

deterministic automaton, this normal automaton is unique, too.

Secondly, we synthesize a minimum automaton from this normal

automaton.

3

We de�ne the standard form of a nondeterministic automa-

ton. Then, all the minimum automata in standard form are

obtained by the algorithm. We also consider the question: how

many minimum automata are equivalent to the given automaton.

In Section 2, we describe some basic de�nitions used in later

discussion. In Section 3, the minimization method by Kameda

and Weiner is introduced. In Section 4, we propose the new

minimization method. In Section 5, we discuss the number of

the minimum automata. And Section 6 is for conclusion.

4

2 Preliminaries

In this section basic de�nitions used in the following sections are

presented.

In the following, we always use � as an input alphabet to au-

tomata.

De�nition 1 (Nondeterministic Finite Automaton) A nonde-

terministic �nite automaton A over alphabet � is a quadruple

A = (S; �; S0; F);

where

� S: the �nite set of states,

� �: the transition function, � : S � �! 2S,

� S0: the set of initial states, S0 � S and S0 6= �,

� F : the set of accepting states, F � S and F 6= �.

�-transition (i.e. a transition which can occur without no input)

is not allowed. 2

The domain of the transition function � is extended from S��

to 2S � �. That is, for R � S, x 2 �,

�(R; x) =
[
s2R

�(s; x):

Furthermore, for � = x1x2 � � �xn,

�(R; �) = �(�(. . . �(�(R; x1); x2); . . . ; xn�1); xn):

5

For null input sequence �, �(R; �) = R.

We assume that there are no states which are not reachable from

the initial states. That is,
[

�2��

�(S0; �) = S.

De�nition 2 (Deterministic Finite Automaton) A determin-

istic �nite automaton is a special case of a nondeterministic �nite

automaton. That is, a nondeterministic �nite automaton A =

(S; �; S0; F) is called a deterministic �nite automaton, if and only

if,

� jS0j = 1 (i.e. the cardinality of the set S0 is equal to 1),

� for any � 2 ��, j�(S0; �)j � 1.

2

For an nondeterministic automaton A = (S; �; S0; F), the be-

havior of A (denoted by bh(A)) is a set

bh(A) = f� 2 ��j�(S0; �) \ F 6= �g:

That is, the behavior of A is a set of input sequences which are

accepted by an automaton A.

In the same way, for si 2 S, Si � S, the behavior from si and

from Si are respectively as follows:

bh(A; si) = f� 2 �
�j�(si; �) \ F 6= �g;

bh(A; Si) = f� 2 �
�j�(Si; �) \ F 6= �g:

6

The �rst parameter A may be omitted when it is not ambiguous.

For an empty set of states, bh(�) = �.

By using the behavior, equivalence of automata, states, and sets

of states are de�ned.

De�nition 3 (Equivalent Automata) AutomataA;B are equiv-

alent, if and only if bh(A) = bh(B). 2

De�nition 4 (Equivalent States) States si; sj 2 S (or sets of

states Si; Sj � S) are equivalent, if and only if bh(si) = bh(sj) (or

bh(Si) = bh(Sj)). 2

We assume any two states of a given automaton are not equiv-

alent states, because we can always obtain such an automaton by

simply merging equivalent states into one.

We also assume, for all s 2 S, bh(s) 6= �, because we can always

obtain such an automaton by removing states s such that bh(s) = �.

For any input sequence � = x1x2 � � �xn, the reversed sequence

� is the sequence with its alphabets arranged in the reversed or-

der. That is, � = xnxn�1 � � �x2x1. The reversed automaton which

accepts the reversed sequences is de�ned.

De�nition 5 (Reversed Automaton) For a nondeterministic �-

nite automaton A = (S; �; S0; F), the reversed automaton of A is

A = (S; �; F; S0), where

8x 2 �; 8si; sj 2 S [si 2 �(sj; x), sj 2 �(si; x)]:

Clearly, it follows that A = A. 2

7

For a given nondeterministic automaton, the equivalent deter-

ministic automaton can be constructed. This operation is called

subset construction.

De�nition 6 (Subset Construction) For a nondeterministic �-

nite automaton A = (S; �;S0; F), the deterministic �nite automaton

equivalent to A is D(A) = (SP ; �P ; P0; FP), where

� SP = f�(S0; �)j� 2 ��gnf�g = fp1; p2; . . . ; pmg,

� �P (pi; x) =

8>><
>>:
f�(pi; x)g if �(pi; x) 6= �

� otherwise
(pi 2 SP),

� P0 = fS0g,

� FP = fp 2 SP jp \ F 6= �g.

Note: pi 2 SP is the subset of S. 8pi 2 SP ; 8x 2 �, if �(pi; x) 6=

�, then 9pj 2 SP ; pj = �(pi; x). 9pj 2 SP ; pj = S0. 2

Since 8pi 2 SP ; bh(D(A); pi) = bh(A; pi), if sets of states pi; pj

of A are equivalent, corresponding states of D(A) can be merged.

By merging the equivalent states of D(A), we can obtain the

unique reduced equivalent automaton which has minimum states.

De�nitely diagnosability[1] is one of the important properties of

sequential machines, when we consider about the diagnosis of these

machines. We extend this property to a deterministic automaton.

De�nition 7 (De�nitely Diagnosable Automaton) A determin-

istic �nite automaton A = (S; �; S0; F) is de�nitely diagnosable, if

8

and only if, for any state s 2 S, there exists an input sequence �

which satisfy the following condition.

bh(�(s; �)) 6= � and 8s0 6= s; bh(�(s0; �)) = �

2

If we consider an input-output pair of a sequential machine as

an input alphabet (of a deterministic �nite automaton), a de�nitely

diagnosable sequential machine can be regarded as a de�nitely diag-

nosable automaton, because long enough sequences of input-output

pair (which correspond to the distinguishing sequence) � satisfy the

above condition.

Note: A sequential machine is de�nitely diagnosable of order �,

if and only if, every input sequence of length � is a distinguishing

sequence.

A matrix called a reduced automaton matrix derived from a

nondeterministic automaton is de�ned[3]. For every equivalence

class of automata, the matrix is unique up to permutation.

De�nition 8 (Reduced Automaton Matrix) For a given non-

deterministic �nite automatonA = (S; �; S0; F), S = fs1; s2; . . . ; slg,

let

� D(A) = (SM ; �M ;M0; FM), SM = fm1;m2; . . . ;mpg,

� D(A) = (SN ; �N ; N0; FN), SN = fn1; n2; . . . ; nqg.

9

Then a p � q matrix (aij) is de�ned, where

aij =

8>><
>>:
1 if 9sk 2 S; sk 2 mi \ nj

0 otherwise.

If there are the same row or column vectors in the matrix, merge

them into one. 2

Over an reduced automaton matrix, grid[3] is de�ned.

De�nition 9 (Grid) Given a reduced automaton matrix, if all the

entries at the intersection of a set of rows fmi1;mi2; . . . ;miag and a

set of columns fnj1; nj2; . . . ; njbg are 1's, then this set of rows and

columns is called a grid represented as follows.

g = fmi1;mi2; . . . ;mia;nj1; nj2; . . . ; njbg

2

A set of grids forms the \cover with grids", if and only if every

1 in the reduced automaton matrix belongs to at least one grid in

the set.

10

3 Conventional Method

In this section, the method for minimizing nondeterministic au-

tomaton, proposed by Kameda and Weiner[3] is summarized.

To synthesize the minimum nondeterministic automata, an

inverse operation of the subset construction is de�ned.

De�nition 10 (Subset Assignment) LetM = (SM ; �M ;M0; FM)

be a deterministic �nite automaton. The pair < S; f > is called a

subset assignment to M if S is a �nite set and f : SM ! 2Snf�g

is a function. Such an f is called a subset assignment function.

2

A nondeterministic automaton is constructed from the subset

assignment using the following intersection rule.

De�nition 11 (Intersection Rule) Let M = (SM ; �M ;M0; FM)

be a deterministic �nite automaton, and let < S; f > be a subset

assignment to M. Then I(S;f;M) is the nondeterministic �nite

automaton (S; �; S0; F), where, for 8s 2 S, 8mi 2 SM , and 8x 2

�,

� S0 = f (m0) (m0 2M0. Since jM0j = 1, m0 is unique.),

� s 2 F , [s 2 f (mi)) mi 2 FM],

� s0 2 �(s; x), [s 2 f(mi)) s0 2 f (�M(mi; x))].

I(S; f;M) is called the nondeterministic �nite automaton ob-

tained by the intersection rule from M. 2

11

A subset assignment < S; f > is derived from the cover with

grids. That is, for the set of grids S, a subset assignment func-

tion is

f(mi) = fg 2 Sjmi 2 gg:

The number of grids in the cover is equal to the number

of states of the nondeterministic automaton constructed using

the intersection rule. Therefore �nding the minimum cover with

grids, the minimum automaton is obtained.

But there is a problem: the synthesized automaton is not

always equivalent to the given one. We must check the equality

of these two automata. If not equivalent, we must search another

automaton.

The reason why the non-equivalent automata are synthesized,

is that the reduced automaton matrix has no information about

the transition of the given automaton.

De�nition 12 (Prime Grid) A grid g1 contains another grid

g2, if and only if all 1 entries contained in g2 are also contained

in g1.

A grid is called a prime grid, if and only if it cannot be

contained in any other grids. 2

If an equivalent automaton is synthesized from a cover with

grids, the cover with only prime grids can be derived. The equiv-

alent automaton synthesized from this cover has less or equal

12

states than the original automaton[3]. Hence, in �nding the min-

imum automaton, we have only to consider prime grids over a

reduced automaton matrix. However all of the minimum au-

tomata cannot be constructed from the cover with only prime

grids.

13

4 Minimization using the Normal Automaton

In this section we present a new algorithm which can construct the

minimum automata e�ciently. For a given automaton, we make the

canonical form of it, named the normal nondeterministic �nite au-

tomaton. All the minimum automata constructed from this normal

automaton are equivalent to the given automaton.

4.1 Normal Nondeterministic Finite Automaton

In the case of a deterministic automaton, the minimum determinis-

tic automaton can be obtained by merging equivalent states. How-

ever in the case of a nondeterministic automaton, merging equiva-

lent states is not su�cient in order to get the minimum automaton.

Some automata have a state whose behavior (i.e. set of accept-

ing input sequences from the state) is the union of the behavior

of other states. In this case, that state must be split into states

which are equivalent to other states so that they can be merged

with respective states and the number of states decreases.

Suppose there are three states s1; s2; s3, for example, and be-

havior of these states is bh(s1) = �; bh(s2) = �, and bh(s3) = �[�

respectively, where � 6= �, and neither � nor � is not an empty set.

Any two of these three states are not equivalent. If s3 is split into

two states, namely s4; s5 whose behavior is �, � respectively, then

s4 can be merged with s1 and s5 with s2, because their behavior

is the same. After merging, there are only two states s1; s2, thus

14

the number of states decreases by merging states after splitting of

states.

An automaton is convenient for minimization, whose states are

split up completely so that the behavior of any two states do not

contain common input sequences. That is to say, behavior of all

states is disjoint. We therefore de�ne the following automaton.

De�nition 13 (Disjoint Nondeterministic Finite Automaton)

A nondeterministic �nite automaton A = (S; �; S0; F), is a disjoint

nondeterministic �nite automaton, if and only if, for all distinct

states s; s0 2 S, bh(s) \ bh(s0) = �. 2

Lemma 1 A disjoint automaton has exactly one accepting state.

Proof: Suppose there are more than one accepting states. Let two

of these states are s; s0. � 2 bh(s) and � 2 bh(s0), thus bh(s) \

bh(s0) 6= �. This is the contradiction to the hypothesis. Q.E.D.

Theorem 1 (Disjoint Nondeterministic Finite Automaton)

A is a disjoint nondeterministic �nite automaton, if and only if A

is a deterministic automaton.

Proof: [Necessary Condition] Following from the Lemma 1, A has

exactly one accepting state. Let this accepting state be sF . For any

state s of A, bh(s) is disjoint. This implies, for any input sequence

� 2 ��, if � is received by A in state sF , automaton A transits to at

most one state s, such that � 2 bh(A; s). Thus A is a deterministic

automaton whose initial state is sF .

15

[Su�cient Condition] Suppose there exist distinct states s; s0 of

A such that bh(s) \ bh(s0) 6= �. Let � 2 bh(s) \ bh(s0). When � is

received by A in the initial state, this automaton transits to states

corresponding to s; s0 simultaneously. This is the contradiction to

the fact that A is a deterministic automaton. Thus, for any two

states s; s0 of A, bh(s)\bh(s0) = �. Thus A is a disjoint automaton.

Q.E.D.

Theorem 1 leads to the method of constructing a disjoint au-

tomaton equivalent to the given automaton.

Corollary: Given a nondeterministic �nite automatonA, make the

deterministic automaton B, which is equivalent to A, using subset

construction. That is B = D(A).

Then the reversed automaton of B is a disjoint automaton D =

B which is equivalent to A. 2

Example: We construct a disjoint nondeterministic automaton

equivalent to a nondeterministic automaton A shown in Figure 1.

Note that \! 2" means the state \2" is an initial state, and \ 1 "

means the state \1" is an accepting state.

First, we makeA, the reversed automaton of A, shown in Figure

2. Secondly, we make a deterministic automaton equivalent to A,

using subset construction. D(A) is obtained shown in Figure 3.

Finally, a disjoint nondeterministic automaton D shown in Figure

4 is obtained by making reversed automaton of D(A). 2

Conversely, by merging some states of the disjoint automaton

D, the original automaton A is obtained.

16

A 0 1

1 1; 2; 3 �

! 2 � 1; 2

! 3 1 2; 3

Figure 1: Nondeterministic Automaton A

A 0 1

! 1 1; 3 2

2 1 2; 3

3 1 3

Figure 2: Nondeterministic Automaton A

D(A) 0 1

! f1g f1; 3g f2g

f1,3g f1; 3g f2; 3g

f2g f1g f2; 3g

f2,3g f1g f2; 3g

Figure 3: Deterministic Automaton D(A)

D 0 1

f1g f2g; f2; 3g �

! f1; 3g f1g; f1; 3g �

! f2g � f1g

! f2; 3g � f1; 3g; f2g; f2; 3g

Figure 4: Disjoint Automaton D = D(A)

Theorem 2 Let D = (SD; �D; D0; FD) be the disjoint automaton

constructed from the given automaton A = (S; �;S0; F). Then,

8s 2 S; bh(A; s) = bh(D; f(s));

where f : S ! 2SD is a function, such that

f(s) = fd 2 SDjd 3 sg:

Note: Since D is the deterministic automaton constructed from

A by subset construction, a state of D is a subset of S.

Proof: Suppose d 2 f(s), that is, s 2 S is belongs to d 2 SD.

Then, for any input sequence � 2 bh(D; d),

d 2 �D(FD; �):

Following from De�nition 10, it implies,

s 2 �(F;�):

Thus � 2 bh(A; s). Therefore, bh(D; d) � bh(A; s).

Conversely, for any input sequence � 2 bh(A; s), it is obvious

that,

9d 2 f (s); � 2 bh(D; d):

Thus, bh(D; f(s)) � bh(A; s). Therefore bh(A; s) = bh(D; f (s)).

Q.E.D.

Example: We merge following states of a disjoint automaton D

shown in Figure 4 and get states of the original automaton A.

17

� merge states f1g; f1; 3g and get state 1.

� merge states f2g; f2; 3g and get state 2.

� merge states f1; 3g; f2; 3g and get state 3.

2

A disjoint automaton is not unique. We therefore de�ne the

normal form of it.

De�nition 14 (Normal Nondeterministic Finite Automaton)

The minimum disjoint �nite automaton among the equivalent dis-

joint automata, is the normal nondeterministic �nite automaton.

2

Lemma 2 Given a nondeterministic �nite automatonA = (S; �; S0; F),

make the deterministic automaton which is equivalent to A using

subset construction. Minimize this automaton (i.e. D(A)), and let

it be B.

Then the reversed automaton of B is the normal nondetermin-

istic �nite automaton C = B which is equivalent to A.

Conversely, the reversed automaton of the normal automaton is

the minimum deterministic automaton.

Proof: It follows from Theorem 1. Q.E.D.

Corollary: A normal automaton is unique in the equivalence class

of automata.

Example: We construct the normal nondeterministic automaton

equivalent to a nondeterministic automaton A shown in Figure 1.

18

Minimize a deterministic automaton D(A) and get B shown in Fig-

ure 5 with renaming the states. That is,

� s1 = f1g

� s2 = f1; 3g

� merge equivalent states f2g, f2; 3g and get s3.

Then the normal nondeterministic automaton C shown in Figure

6 is obtained by making reversed automaton of B. 2

Since any state of the normal automaton is obtained by merging

some equivalent states of the disjoint automaton, for any state of the

disjoint automaton, a state of the normal automaton correspond.

We reconstructed the original automaton from the disjoint au-

tomaton. Then we consider the reconstruction from the normal

automaton. That is, we merge some corresponding states of the

normal automaton instead of the states of the disjoint automaton.

Since the normal automaton is equivalent to the disjoint automa-

ton, the automaton reconstructed from the normal automaton is

also equivalent to the original automaton.

De�nition 15 (Standard Form) A nondeterministic �nite au-

tomaton A is in standard form, if and only if D(A) is the minimum

deterministic automaton.

Since the disjoint automaton constructed from the standard

formed automaton is the normal automaton, the reconstruction

19

B 0 1

! s1 s2 s3

s2 s2 s3

s3 s1 s3

Figure 5: Minimized Deterministic Automaton B

C 0 1

s1 s3 �

! s2 s1; s2 �

! s3 � s1; s2; s3

Figure 6: Normal Automaton C = B

from the normal automaton leads to the standard formed automa-

ton.

Example: We merge following states of the normal automaton C

shown in Figure 6 and get states of the standard formed automaton

A0 shown in Figure 7.

� merge states s1; s2 and get state 1.

� rename state s3 to state 2.

� merge states s2; s3 and get state 3.

A0 is obtained by adding a transition \3 1! 1" to A. 2

We can transform the nondeterministic automaton into its stan-

dard form by adding some extra transitions to the automaton.

Therefore the number of states is unchangeable. Hence we only

consider the standard formed nondeterministic �nite automata in

the following of this thesis.

All of the standard formed minimum nondeterministic automata

equivalent to the normal automaton, can be obtained by merging

some states of the normal nondeterministic automaton. We con-

sider the way how to construct the minimum automaton from a

given normal automaton.

Let a normal automaton be N = (SN ; �N ; N0; FN), where SN =

fn1; n2; . . . ; nqg. The minimum automaton which is equivalent to

N can be expressed as A = (S; �; S0; F), where

� S � 2SN i.e. si 2 S is a subset of SN ,

20

A0 0 1

1 1; 2; 3 �

! 2 � 1; 2

! 3 1 1; 2; 3

Figure 7: Standard Formed Nondeterministic Automaton A0

� �(si; x) = Map(�N(si; x)),

� S0 = Map(N0),

� F = fsijsi \ FN 6= �g.

Map(RN) (RN � SN) is a subset of S that satisfy [Map(RN) =

RN . (Note: [Map(RN) means the union of all sets si 2 Map(RN).)

The set S, therefore, must be determined so that the function Map :

2SN ! 2S can be de�ned.

Note, when we let Map(RN) = fsijsi � RNg, [Map(RN) � RN

always holds. Thus it follows for any S, we can always de�ne a

function Map so that the set of A's accepting sequences bh(A) is

included by the set of N 's accepting sequences bh(N).

4.2 Minimization Algorithm

In this section, we present an algorithm to construct the nondeter-

ministic �nite automaton with the smallest number of states among

automata equivalent to the given normal nondeterministic �nite au-

tomaton.

Let N = (SN ; �N ;N0; FN) be the given normal automaton, and

A = (S; �; S0; F) be an automaton constructed from N . All we have

to do is to �nd the smallest S � 2SN , under which the function Map

exists.

Theorem 3 For every transition si
x! sj (i.e. sj 2 �(si; x)) of a

nondeterministic �nite automaton A = (S; �; S0; F) which can be

21

constructed by merging some states of the normal nondeterminis-

tic �nite automaton N = (SN ; �N ; N0; FN), the following condition

holds.
[

nj2sj

�N(nj; x) � si

Proof: Suppose there exists a transition si
x! sj (sj 2 �(si; x))

where the above condition does not hold. Then, there exists ni 2 SN

such that

ni 2
[

nj2sj

�N(nj; x)nsi:

(\n" is a di�erence set operator)

Since ni is a state of the normal automaton, and ni 62 si, thus

bh(ni) \ bh(si) = �. On the other hand, �N(ni; x) � sj, and sj 2

�(si; x) which implies sj � �N(si; x), thus

bh(�N(ni; x)) � bh(�N(si; x)):

This is a contradiction to the fact bh(ni) \ bh(si) = �. Thus,

there does not exists a transition where the theorem's condition

does not hold. Q.E.D.

This theorem leads to the following theorem.

Theorem 4 If the reversed automaton of the normal automaton

is de�nitely diagnosable, there does not exist an equivalent non-

deterministic automaton which has fewer states than the normal

automaton.

Note: the reversed automaton of the normal automaton is a

deterministic automaton.

22

Proof: Suppose there exists an equivalent automaton B which has

fewer states than the normal automaton N . Let A = (S; �; S0; F)

be the reversed automaton of B. Since A has fewer states than N ,

A has a state si such that si � fni; njg (ni; nj is a distinct states of

N .).

Following from Theorem 3, for all input alphabet x 2 �, if A

has a state sj 2 �(si; x), then sj � f�N(ni; x); �N(nj; x)g. Same

things can be applied to sj repeatedly. Hence for all input sequence

� 2 ��,

�N(ni; �) 6= �) �N(nj; �) 6= �:

It implies, for all input sequence � 2 ��,

bh(�N(ni; �)) 6= �) bh(�(nj; �)) 6= �;

because all of the states of B are reachable. It violates the de�nitely

diagnosability of N . Q.E.D.

Using the Theorem 3, search tree over S � 2SN can be pruned.

That is, to construct the minimum automaton, we add states one

by one to S, which is initially an empty set, and if current S does

not satisfy the condition of Theorem 3, we stop adding more states

to S.

Example: A normal nondeterministic automatonN = (SN ; �N ; N0; FN),

SN = f0; 1; 2; 3; 4; 5g is given as Figure 8.

First, let S = �, and we choose the elements of S (i.e. the

states of the minimum automaton) one by one. As Figure 8 shows,

N0 = f2; 4; 5g, and the sets of the initial states of the normal au-

23

N 0 1

0 � �

1 0 4

! 2 1; 2; 3; 5 2; 3

3 � 0; 5

! 4 � 1

! 5 4 �

Figure 8: Normal Automaton N

tomaton and the minimum automaton must satisfy the equation:

S0 = Map(N0). Thus S0 is chosen from the following 5 possibilities.

1. ff2; 4; 5gg

2. ff2; 4g; f5gg

3. ff2; 5g; f4gg

4. ff4; 5g; f2gg

5. ff2g; f4g; f5gg

We choose, for example, the �rst possibility. Let state s1 =

f2; 4; 5g, and S0 = fs1g. And add s1 to S. Thus S becomes fs1g.

Secondly, we consider the transitions from the state s1. There

are two transitions, namely �(s1; 0) and �(s1; 1). For �(s1; 0),

�(s1; 0) = Map(�N(s1; 0)); �N(s1; 0) = f1; 2; 3; 4; 5g:

Thus, we must add some states to S so that 9R � S; [R =

f1; 2; 3; 4; 5g holds. Because f1; 2; 3; 4; 5gns1 = f1; 3g, states to be

added are chosen from the following 2 possibilities.

� One state which contains both of 1; 3.

� a state which contains 1 and a state which contains 3.

Notice these states can not contain 0. With 0 contained, s1 would

contain 0 because of Theorem 3 and �N(0; 0) = f1g. This is the

contradiction to the fact s1 = f2; 4; 5g.

24

De�nition 16 (Cover) S � 2SN , RN1; RN2 � SN are given.

Cover(S;RN1; RN2) is de�ned to be the set consisting of all the

sets R which satisfy following conditions.

� RN1 � [R � SNnRN2

� 8s 2 R; RN1 6� [(Rnfsg)

� 8s 2 R; 8s0 2 S; s 6= s0

If RN1 = �, Cover(S;�;RN2) = f�g. 2

That is to say, Cover(S;RN1; RN2) is an enumeration of the

possible sets of states to be added to S in order to cover RN1

and not to contain any elements of RN2. Using this notation, for

�(s1; 0), the set of states to be added to S can be written as R 2

Cover(S; f1; 3g; f0; 4; 5g). In the same way, for �(s1; 1), the set of

states to be added to S can be chosen from Cover(S; f1; 2; 3g; f0; 4; 5g).

If it is not necessary to construct all of the minimum automata

(i.e. in the case that it is su�cient only to construct one of the min-

imum automata), R 2 Cover(S;RN1; RN2), such that 9s 2 R; 9s0 2

S; s � s0, can be omitted, because s00 = sns0 can be used instead of

s to cover RN1. In other words, the third condition of the cover (i.e.

8s 2 R; 8s0 2 S; s0 6= s) can be replaced by the following condition.

� 8s 2 R; 8s0 2 S; s 6� s0

As ff1; 2; 3gg is a member of both Cover(S; f1; 3g; f0; 4; 5g) and

Cover(S; f1; 2; 3g; f0; 4; 5g), so we choose ff1; 2; 3gg. Let s2 = f1; 2; 3g,

25

and add s2 to S. Then, �(s1; 0) = fs1; s2g, �(s1; 1) = fs2g. Now,

S = fs1; s2g.

In the next phase, we consider the transition from s2. The set

of states to be added to S can be chosen from Cover(S; f0; 5g; f4g)

and Cover(S; f0; 3g; f1g). As ff0; 2; 3; 5gg is a member of both of

them, let s3 = f0; 2; 3; 5g and add it to S. Then S = fs1; s2; s3g.

Since �(s3; 0) = fs1; s2g, �(s3; 1) = fs3g, no more states have to

be added to S. Similarly searching other branches of possibilities,

we'll �nd there are no solutions where the number of states is less

than 3. Thus we obtain the minimum automaton shown in Figure

9. 2

Minimization procedure goes as follows.

procedure Minimize(N = (SN ; �N ; N0; FN))

m 1

Smin Unde�ned

for all R 2 Cover(�;N0; SNnN0)

Search(R;R)

return Smin

end

Smin is a variable for a set of states of the minimal automaton

among the constructed automata. m is a variable such that m =

jSminj.

First, choose S0 from Cover(�;N0; SNnN0). That is, [S0 must

26

0 1

! s1 s1; s2 s2

s2 s2; s3 s1; s3

s3 s1; s2 s3

Figure 9: Minimum Nondeterministic Automaton

contain N0 and may not contain anything else. Next, call Search

procedure to search the transitions from S0, and to assign the set

of states of the minimum automaton to Smin. At the end of the

procedure, return the minimum set of states.

Procedure Search(S;T) to search the transition from T � S goes

as follows. This procedure is called recursively, and pick up a state

one by one from T to search the transitions from the state.

If jSj � m, no more search is needed, because no automata

searched from S have less than m states. Thus return immediately.

If T = �, all of the transitions are searched, that is, a new automa-

ton is constructed. Since jSj < m, this automaton has fewer states

than the old one. So let Smin S and m jSj, and return.

The above process forms the former part of the Search procedure

shown below.

Procedure Search(S;T)

if jSj � m then return

if T = � then begin

Smin S

m jSj

return

end

In this procedure, only one of the minimum automaton can be

obtained, because when the minimum automaton is found, it imme-

27

diately returns. To get all of the minimum automata, the procedure

must hold all of the sets of states of the minimum automata. We

use the variable Smin to hold the set. If the automaton, such that

jSj < m, is found, clear Smin, and let m = jSj. Then the former

part of the Search procedure goes as follows.

Procedure Search(S;T)

if jSj > m then return

if T = � then begin

if jSj < m then begin

Smin �

m jSj

end

Smin Smin [S

return

end

else if jSj = m then return

The latter of the Search procedure goes as follows. Let s be one

of the elements of T , remove s from T , and now search transitions

from s. For each transition (i.e. 8x 2 �; �(s; x)), calculate the

possible set of states to be added to S. Let R be the possible set.

Let RN be the set of the normal automaton's states transited

from s, which is covered with the states in S [R. The comple-

mentary set of RN may not be covered with the states in R. Let

28

R0 be the set of the normal automaton's states which is already

covered by the states in S. Thus, the set covered by R is RNnR0.

At the result, the possible sets of states to be added belong to the

Cover(S;RNnR0; SNnRN).

Then, for any possible set R, add R to S and search recursively,

that is, call Search(S [R, T [R).

s 2 T

T T nfsg

for all x 2 � begin

RN
[
ni2s

�N(ni; x)

RN2 SNnRN

R0 fsi 2 Sjsi � RNg

RN1 RNn [R0

for all R 2 Cover(S;RN1; RN2)

Search(S [R, T [R)

end

end

4.3 Correctness of the Algorithm

In this section, we prove the correctness of the algorithm proposed

in Section 4.2. First, we prove the property of �nitely terminat-

ing. Secondly, we prove the soundness, that is, all the automata

constructed by the algorithm are equivalent to the given normal

29

automaton. Finally, we prove the completeness, that is, all the

equivalent minimum nondeterministic automata in standard form

can be obtained.

Let N = (SN ; �N ; N0; FN) be the given normal nondeterministic

�nite automaton, which is an argument to the algorithm.

We begin with the property of �nitely terminating.

Theorem 5 (Finitely Terminating) For any given automaton,

the minimization algorithm terminates.

Proof: For any set R 2 Cover(S;RN1; RN2), 8s 2 R; s 62 S (follows

from De�nition 16). It implies that all the elements added to T

(added when Search(S[R, T [R) is called) are di�erent from each

other. Since 2SN is a �nite set, thus a set of all of the elements added

to T is �nite. Every time the procedure Search(S;T) is called, one

element of T is removed by T Tnfsg. Hence T becomes an

empty set in �nite time.

Since the set � and the set Cover(S;RN1; RN2) are �nite, state-

ments under the two \for all" statements in the Search(S;T) pro-

cedure repeat �nitely.

Therefore the minimization procedure terminates �nitely. Q.E.D.

Next, we prove the soundness of the algorithm.

Lemma 3 For the minimum nondeterministic �nite automatonA =

(S; �; S0; F) constructed by the algorithm, the following conditions

hold.

30

� 8s 2 S; �(s; x) = Map(�N(s; x)),

� S0 = Map(N0).

Proof: S0 is chosen from Cover(�;N0; SNnN0). It implies N0 �

[S0 � SNn(SNnN0). Thus [S0 = N0, that is, S0 = Map(N0).

Suppose there exist s 2 S, x 2 �, such that 8R � S, �N(s; x) 6=

[R. Let RN = �N(s; x). Following from the algorithm, there exists

S0; R � S, where

� RN2 = SNnRN ,

� R0 = fs 2 S 0js � RNg,

� RN1 = RNn [R0,

� 9R 2 S; R 2 Cover(S0; RN1; RN2).

Thus RNn [R0 � [R � RN (follows from De�nition 16). It

implies ([R)[([R0) = RN , that is [(R[R0) = RN , and R[R0 � S.

This is the contradiction. Q.E.D.

Theorem 6 (Soundness) All the automata constructed by the

algorithm are equivalent to the given normal automaton.

De�nition 17 For a integer l,

bhl(A; s) = f�j� 2 bh(A; s) ^ j�j � lg;

where s may be a states or a set of states of an automaton A. 2

31

Proof: Following from Lemma 3, for the minimum nondetermin-

istic automaton A = (S; �; S0; F) constructed by the algorithm, fol-

lowing conditions hold.

� 8s 2 S; �(s; x) = Map(�N(s; x)),

� S0 = Map(N0),

� F = fsjs \ FN 6= �g.

Suppose, for a integer l,

8s 2 S; bhl(A; s) = bhl(N ; s):

Since 8s 2 S; �(s; x) = Map(�N(s; x)),

bh(A; �(s; x)) = bh(N ; �N(s; x)):

Thus,

8s 2 S; bhl+1(A; s) = bhl+1(N ; s):

8s 2 S; bh0(A; s) = bh0(N ; s), because

bh0(A; s) =

8>><
>>:
� if s \ FN 6= �

� otherwise.

= bh0(N ; s):

Hence, for any s, bh(A; s) = bh(N ; s). Since S0 = Map(N0),

bh(A) = bh(N). Q.E.D.

Finally, we prove the completeness.

Theorem 7 (Completeness) All the standard formed minimum

automata equivalent to the given automaton are constructed by the

algorithm.

32

Proof: All the minimum automata in standard form are con-

structed by merging some states of the normal automaton.

Following from De�nition 16, all the set of states of the normal

automaton, which satisfy Theorem 3 can be chosen by the algo-

rithm. Q.E.D.

33

5 The Number of the Minimum Automata

In this section, the number of the minimum automata in standard

form equivalent to a given automaton is discussed.

5.1 Expanded Reduced Automaton Matrix

Let A = (S; �; S0; F) (S = fs1; s2; . . . ; smg) be the minimum non-

deterministic automaton. The deterministic automaton which is

equivalent to A is M = D(A) = (SM ; �M ;M0; FM). Then, SM is

a subset of the power set of S. We assume SM is equal to the

power set of S. Such an automaton is easily constructed by adding

some transitions labeled with extra alphabets. For example, if a set

fs1; s2g does not appear in SM , we add a new alphabet y to the set

� and let �(s1; y) = fs1; s2g. Then D(A) transit from states which

contain s1 to the state which consists of s1; s2.

Similarly, we assume the set of states of D(A) is also equal to

the power set of S. Then the reduced automaton of A is (2m� 1)�

(2m�1) matrix, where m = jSj. This matrix is covered by m grids.

Since row vectors of this matrix are distinct each other, 1 entries of

each row vector are covered by a distinct set of grids. The number

of distinct sets from m elements is 2m� 1, thus it implies the set of

row vectors are unique within permutation of the columns.

The same things can be applied to the column vectors, too. Con-

sequently the reduced automaton matrix derived from this kind of

automaton is unique, and only depends on the number of states

34

of the minimum automaton. We de�ne this automaton as the ex-

panded reduced automaton.

De�nition 18 (Expanded Reduced Automaton Matrix) For

given m, the (2m� 1)� (2m� 1) matrix, whose row or column vec-

tors are distinct each other, covered with m grids is the expanded

reduced automaton matrix Xm. 2

Example: When m = 3, the expanded reduced automaton matrix

goes as follows.

Xm =

0
BBBBBBBBBBBBBBBBBBBBB@

1 0 1 0 1 0 1

0 1 1 0 0 1 1

1 1 1 0 1 1 1

0 0 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCCCCCA

This matrix is covered by following 3 grids.

� g(Xm)1 = f1; 3; 5; 7; 1; 3; 5; 7g, i.e. a grid of 1,3,5,and 7th rows

and columns.

� g(Xm)2 = f2; 3; 6; 7; 2; 3; 6; 7g

� g(Xm)3 = f4; 5; 6; 7; 4; 5; 6; 7g

2

35

Generally speaking, every expanded reduced automaton matrix

Xm is covered by the following m grids after appropriate permuta-

tion of the rows and columns of the matrix.

g(Xm)k = fiji&(2
k�1) 6= 0; jjj&(2k�1) 6= 0g

where k = 1; 2; . . . ;m, and \&" means the bitwise \and" operator.

5.2 The Number of the Minimum Automata

For any reduced automaton matrix which is covered with m grids,

each row (or column) vector is covered with some of m grids. For

every covering patterns fromm grids (i.e. a set of grids which covers

the all 1 entires of the vector), there exists the row (or column) of

the expanded reduced automaton matrix Xm which has the same

covering pattern, because every pattern exists in Xm. Thus, for

any rows (or columns) of a reduced automaton matrix, the row

(or column) of expanded matrix corresponds. It implies that any

reduced automaton matrix which is covered withm grids is included

in the Xm. In other word, by eliminating some rows and columns

from Xm, every reduced automaton matrices are obtained.

Example: The reduced automaton matrix of the automaton N

shown in Figure 8 goes as follows.

36

M =

0
BBBBBBBBBBBBBBBBB@

0 0 1 0 1 1

0 1 1 1 1 1

1 1 1 1 1 1

0 1 1 1 0 0

1 1 1 1 0 1

1 0 1 1 1 1

1
CCCCCCCCCCCCCCCCCA

This matrix is covered with following three grids, and each grid

correspond to the state of the minimum automaton shown in Figure

9.

� g(M)1 = f1; 2; 3; 6; 3; 5; 6g (i.e. a grid of 1,2,3, and 6th rows

and 3,5, and 6th columns) correspond to s1.

� g(M)2 = f2; 3; 4; 5; 2; 3; 4g correspond to s2.

� g(M)3 = f3; 5; 6; 1; 3; 4; 6g correspond to s3.

After permutation of rows and columns of M : arrange 1,6,4,5,2,

and 3rd row vector in this order, and 1,5,6,2,4,and 3rd column,

following matrix M 0 is obtained.

M 0 =

0
BBBBBBBBBBBBBBBBB@

0 1 1 0 0 1

1 1 1 0 1 1

0 0 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCA

37

M 0 is included in X3 (i.e. M is the intersection of 2-7th rows

and 1-5,7th columns of X3).

Since the set of m grids which cover Xm is unique, determining

which part of Xm a reduced automaton matrix is included, lead to

the set of grids which cover the reduced automaton matrix. Further

the set of grids lead to the minimum automaton.

Thus the number of the minimum automata, which is con-

structed from the normal automaton, is the number of reduced

automaton matrices which are included in the expanded reduced

automaton matrix. For a reduced automaton given (independent

to an automaton itself), upper bound of the number of the mini-

mum automata is the number of matrices included in the expanded

matrix.

38

6 Conclusion

We have presented a minimization algorithm of nondeterministic

�nite automata. In the conventional method using the reduced

automaton matrix proposed by Kameda and Weiner[3], the condi-

tion is unknown where the automaton, which is not equivalent to

the given one, is synthesized from the matrix. We have made it

clear by proposing the concept of the normal nondeterministic �-

nite automaton. That is to say, the synthesized automaton is not

equivalent where the condition of Theorem 3 does not hold.

We do not consider much about the e�ciency of the proposed al-

gorithm, because the algorithm as well as the conventional method

depends on the subset construction whose complexity is already

O(2n) where n is the number of states of the given automaton.

The application of the minimization algorithm is a theme of future

research.

The conventional method[3] can be combined with the proposed

algorithm. That is, constructing the sets of states corresponding

to the prime grid only instead of all the possible sets of states.

It may be more e�cient. However it cannot construct all of the

minimum automaton, because the minimum automaton may have

a state which does not correspond to the prime grid.

We have also presented a method to calculate the upper bound

of the number of the minimum automata in standard form, us-

ing the expanded reduced automaton matrix. The upper bound

39

depends only to the reduced automaton matrix. In most cases,

we conjecture, the number of the minimum automaton is 1. But

the condition where the minimum automaton in standard form is

unique is also left for the future work.

As we pointed, there are non-standard formed automata. Thus

the number of the minimum automata may be larger. Moreover,

given behavior of all the state, the function Map is not unique.

Hence there are at least three stages in the varieties of the minimum

nondeterministic automata. At present, we do not know how to

handle such a vast variety of nondeterministic �nite automata.

Acknowledgements

I would like to express my sincere appreciation to Professor Shuzo

Yajima, who gave me the opportunity to study on logic design, for

his continuous guidance, interesting suggestions, accurate criticisms

and encouragements.

I would also like to express my thanks to Associate Professor

Naofumi Takagi of Kyoto University who has been giving me in-

valuable suggestions.

I also wish to acknowledge Mr. Kiyoharu Hamaguchi and Mr. Ya-

suhiko Takenaga of Kyoto University for their helpful suggestions

and valuable discussions. I am also grateful for their comments

on the rough draft of this thesis. Thanks are also due to all the

members of the Yajima Laboratory for useful discussions.

40

References

1. Z. Kohavi. \Switching and Finite Automata Theory." Tata

McGraw-Hill, 1970

2. S. C. Kleene. \Representation of Events in Nerve Nets and Fi-

nite Automata" Automata Studies, Princeton University Press,

1956, pp.3-41

3. T. Kameda and P. Weiner. \On the State Minimization of Non-

deterministic Finite Automata" IEEE Trans. Computer vol C-

19, No. 7, July 1970

4. J. A. Brzozowski. \Derivatives of Regular Expressions" J. As-

soc. Computing Machinery, vol. 11, pp.481-494, 1964

5. G. Berry and R. Sethi. \From Regular Expressions to Determin-

istic Automata" Theoretical Computer Science, vol. 48, 1986,

pp.117-126

6. A. Restivo. \Codes and Automata" Lecture Notes in Computer

Science vol 386, May 1988

7. A. V. Aho and J. D. Ullman. \Principles of Compiler Design"

Addison-Wesley, 1977

8. M. C. Browne, E. M. Clarke, and O. Gr�umberg. \Characteriz-

ing Kripke Structures in Temporal Logic" CMU Tech. Report

CS-87-104

41

9. M. Kato, Y. Inagaki, and N. Honda. \An E�cient Algorithm

for Synthesizing Finite Automata with Application to Generat-

ing Lexical Analyzer" IEICEJ Tech. Report AL83-27

42

Appendix

List of Publications

� H. Sengoku and S. Yajima. \Minimization of Nondeterminis-

tic Finite Automata" Kokyuroku, Kyoto University Research

Institute for Mathematical Science (to appear).

� H. Sengoku and A. Sugiyama. \A Fast Convergence Algo-

rithm for Adaptive FIR Filters with Simultaneous Adaptation

of Coe�cients and Tap Locations" 1991 Spring National Con-

vention Record of IEICEJ, Mar. 1991, A{205.

� A. Sugiyama and H. Sengoku. \A Fast Convergence Algo-

rithm for Adaptive FIR Filters with Simultaneous Adapta-

tion of Coe�cients and Tap Locations" IEICEJ Tech. Report

vol.90, No.466, CAS90-142, pp.53-60, Mar. 1991.

